A mutation in the receptor binding site of GDF5 causes Mohr-Wriedt brachydactyly type A2.

نویسندگان

  • K W Kjaer
  • H Eiberg
  • L Hansen
  • C B van der Hagen
  • K Rosendahl
  • N Tommerup
  • S Mundlos
چکیده

BACKGROUND Brachydactyly type A2 (OMIM 112600) is characterised by hypoplasia/aplasia of the second middle phalanx of the index finger and sometimes the little finger. BDA2 was first described by Mohr and Wriedt in a large Danish/Norwegian kindred and mutations in BMPR1B were recently demonstrated in two affected families. METHODS We found and reviewed Mohr and Wriedt's original unpublished annotations, updated the family pedigree, and examined 37 family members clinically, and radiologically by constructing the metacarpo-phalangeal profile (MCPP) pattern in nine affected subjects. Molecular analyses included sequencing of BMPR1B, linkage analysis for STS markers flanking GDF5, sequencing of GDF5, confirmation of the mutation by a restriction enzyme assay, and localisation of the mutation inferred from the very recently reported GDF5 crystal structure, and by superimposing the GDF5 protein sequence onto the crystal structure of BMP2 bound to Bmpr1a. RESULTS A short middle phalanx of the index finger was found in all affected individuals, but other fingers were occasionally involved. The fourth finger was characteristically spared. This distinguishes Mohr-Wriedt type BDA2 from BDA2 caused by mutations in BMPR1B. An MCPP analysis most efficiently detected mutation carrier status. We identified a missense mutation, c.1322T>C, causing substitution of a leucine with a proline at amino acid residue 441 within the active signalling domain of GDF5. The mutation was predicted to reside in the binding site for BMP type 1 receptors. CONCLUSION GDF5 is a novel BDA2 causing gene. It is suggested that impaired activity of BMPR1B is the molecular mechanism responsible for the BDA2 phenotype.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Activating and deactivating mutations in the receptor interaction site of GDF5 cause symphalangism or brachydactyly type A2.

Here we describe 2 mutations in growth and differentiation factor 5 (GDF5) that alter receptor-binding affinities. They cause brachydactyly type A2 (L441P) and symphalangism (R438L), conditions previously associated with mutations in the GDF5 receptor bone morphogenetic protein receptor type 1b (BMPR1B) and the BMP antagonist NOGGIN, respectively. We expressed the mutant proteins in limb bud mi...

متن کامل

A GDF5 Point Mutation Strikes Twice - Causing BDA1 and SYNS2

Growth and Differentiation Factor 5 (GDF5) is a secreted growth factor that belongs to the Bone Morphogenetic Protein (BMP) family and plays a pivotal role during limb development. GDF5 is a susceptibility gene for osteoarthritis (OA) and mutations in GDF5 are associated with a wide variety of skeletal malformations ranging from complex syndromes such as acromesomelic chondrodysplasias to isola...

متن کامل

Brachydactyly type A2 associated with a defect in proGDF5 processing.

We investigated a family with a brachydactyly type A2 and identified a heterozygous arginine to glutamine (R380Q) substitution in the growth/differentiation factor 5 (GDF5) in all affected individuals. The observed mutation is located at the processing site of the protein, at which the GDF5 precursor is thought to be cleaved releasing the mature molecule from the prodomain. In order to test the...

متن کامل

A homozygous BMPR1B mutation causes a new subtype of acromesomelic chondrodysplasia with genital anomalies.

We present a patient with acromesomelic chondrodysplasia and genital anomalies caused by a novel homozygous mutation in BMPR1B, the gene coding for bone morphogenetic protein receptor 1B. The 16 year old girl, the offspring of a multiconsanguinous family, showed a severe form of limb malformation consisting of aplasia of the fibula, severe brachydactyly, ulnar deviation of the hands, and fusion...

متن کامل

Combinatorial signaling through BMP receptor IB and GDF5: shaping of the distal mouse limb and the genetics of distal limb diversity.

In this study, we use a mouse insertional mutant to delineate gene activities that shape the distal limb skeleton. A recessive mutation that results in brachydactyly was found in a lineage of transgenic mice. Sequences flanking the transgene insertion site were cloned, mapped to chromosome 3, and used to identify the brachydactyly gene as the type IB bone morphogenetic protein receptor, BmprIB ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of medical genetics

دوره 43 3  شماره 

صفحات  -

تاریخ انتشار 2006